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Problems in Astrophysics:

Coherent Synchrotron Radiation, Two-Stream
Instability, Cyclotron Maser Instability etc.

Problems in Beam Physics:

Coherent Synchrotron Radiation, Two-Stream
Instability, Cyclotron Maser Instability etc.




Consider the following equilibrium distribution

Rigid rotor equilibrium

fU(H,Py) = No8(Pg — Py) exp (— H_Yomécz%% )

cylindrical symmetry
small thermal energy spread
external magnetic field in the z-direction




Linear Stability Analysis

® For which parameters does an arbitrary
initial perturbation grow!?

® What is the growth rate?

® How big is the saturation amplitude and
the radiated power! (Linear analysis is not
sufficient to answer these questions.)




Previous Work
Goldreich and Keeley 1971 (| dimensional)

Heifets and Stupakov 2002 (| dimensional
with particles moving on different orbits)

Byrd 2003 (| dimensional with beampipe)

Uhm, Davidson et al. 1985 (2 dimensional,
no betatron oscillations, beam pipe,
different equilibrium etc.)
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ABSTRACT

A simple model consisting of a distribution of charges constrained to move on a ring is the basis of
an investigation of coherent synchrotron radiation. The radiation produced as a result of a nonrandom
particle distribution on the ring is examined from the viewpoint of the interaction of individual particles
with the total electric field of the system. A linear stability analysis shows that, under reasonable con-
ditions, a uniform distribution of particles is unstable to clumping. The model is applied to pulsars, in
which the high brightness temperatures suggest that a cooperative emission mechanism is responsible for
the ﬁadiofrequency radiation. The application to circular accelerators and storage rings is discussed
briefly.,

I. INTRODUCTION
The main purpose of this paper is to show in detail how the power radiated by a

system of charges may be understood in terms of the interactions of individual particles
through the electromagnetic field. The physical situation which will be discussed is a




tion (14) is insensitive to a spread in direction A« if Aa < #~1/3%; this condition is easily
satisfied for tubes of the thickness considered above.

¢) Circular Accelerators and Storage Rings

A one-dimensional continuity equation has been used in the preceding analysis. This
will not generally be a good approximation for the motions of particles in accelerators
or storage rings. Thus the analysis of the instability is not applicable in general. Even
for cases where the approximation is not too bad, the conditions for instability, and for
negligible interference caused by the energy spread in the beam, are not easily satisfied.
Under most conditions the growth rate s/w;<< 1. In addition, the presence of metal
surfaces near the beam would probably tend to damp the instability. Thus it seems
unlikely that the instability will be important for high-energy particle machines.

VII. CONCLUSIONS

No very strong conclusions can be drawn in the absense of a detailed model for the
region near the magnetic poles of the neutron star. However, it has been shown that an




Vlasov-Maxwell Equations

To first order in the perturbation amplitude the Vlasov
equation is
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We also need the Maxwell equations and
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All perturbed quantities have the dependence e™¢tkz—ior




Finally, ...

... the following eigenvalue equation can be obtained
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which can be rewritten in terms of the following three
dimensionless quantities
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Boundary conditions:
The perturbation in the electric field should be regular at

the origin and approach zero for r— oo




Results in the thin limit
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Growth rate for y=30 and T=0.02




Results in the thin limit

including betatron oscillations
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Growth rate for y=30 and T=0.02 including betatron oscillations




Inclusion of axial modes
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Brightness Temperature

In linear perturbation theory the exponential growth lasts

forever. We need the saturation amplitude in order to

compute the brightness temperature, though.

For a relativistic particle on a circular orbit (Lawson |988)
0Py = me*r(z)&f) Meyx — _Y;n—_ff ~ —meY

Together with the previously calculated growth rates and

dd@ = —er [8Ey + (v x 8B)y]

the saturation amplitude can be calculated

2 (meY3Vq2>)2 Im(®) 4
30y [ = TR (1))

Brightness Temperatures of 10*°K can be achieved.
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Particle-in-cell simulation

x [m] -66.4 uVm-2 158.0 uVm™




Total Power from OOPIC
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MHD

We solve the MHD equations for a Brillioun flow

{%—FV-V} (yv):mLeF P+V-j=0

Similar results for large growth rates
Significant decoherence for small growth rates
due to additional shear
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Thicker layers

with Coulomb term

without Coulomb term




